Simultaneous image segmentation and medial structure estimation: application to 2D and 3D vessel tree extraction
نویسندگان
چکیده
We propose a variational approach which combines automatic segmentation and medial structure extraction in a single computationally efficient algorithm. In this paper, we apply our approach to the analysis of vessels in 2D X-ray angiography and 3D X-ray rotational angiography of the brain. Other variational methods proposed in the literature encode the medial structure of vessel trees as a skeleton with associated vessel radii. In contrast, our method provides a dense smooth level set map which sign provides the segmentation. The ridges of this map define the segmented regions skeleton. The differential structure of the smooth map (in particular the Hessian) allows the discrimination between tubular and other structures. In 3D, both circular and non-circular tubular cross-sections and tubular branching can be handled conveniently. This algorithm allows accurate segmentation of complex vessel structures. It also provides key tools for extracting anatomically labeled vessel tree graphs and for dealing with challenging issues like kissing vessel discrimination and separation of entangled 3D vessel trees.
منابع مشابه
Enhancement of Learning Based Image Matting Method with Different Background/Foreground Weights
The problem of accurate foreground estimation in images is called Image Matting. In image matting methods, a map is used as learning data, which is produced by those pixels that are definitely foreground, definitely background ,and unknown. This three-level pixel map is often referred to as a trimap, which is produced manually in alpha matte datasets. The true class of unknown pixels will be es...
متن کاملLive-Vessel: Extending Livewire for Simultaneous Extraction of Optimal Medial and Boundary Paths in Vascular Images
This paper incorporates multiscale vesselness filtering into the Livewire framework to simultaneously compute optimal medial axes and boundaries in vascular images. To this end, we extend the existing 2D graph search to 3D space to optimize not only for spatial variables (x, y), but also for radius values r at each node. In addition, we minimize change for both scale and the smallest principle ...
متن کاملLive-Vessel: Interactive Vascular Image Segmentation with Simultaneous Extraction of Optimal Medial and Boundary Paths
Vessel analysis is important for a wide range of clinical diagnoses and disease research such as diabetes and malignant brain tumours. Vessel segmentation is a crucial first step in such analysis but is often complicated by structural diversity and pathology. Existing automated techniques have mixed results and difficulties with non-idealities such as imaging artifacts, tiny vessel structures a...
متن کاملA Semi-Automated Algorithm for Segmentation of the Left Atrial Appendage Landing Zone: Application in Left Atrial Appendage Occlusion Procedures
Background: Mechanical occlusion of the Left atrial appendage (LAA) using a purpose-built device has emerged as an effective prophylactic treatment in patients with atrial fibrillation at risk of stroke and a contraindication for anticoagulation. A crucial step in procedural planning is the choice of the device size. This is currently based on the manual analysis of the “Device Landing Zone” fr...
متن کامل3D volume segmentation of MRA data sets using level sets: image processing and display.
In this article, we use a level set-based segmentation algorithm to extract the vascular tree from magnetic resonance angiography (MRA) data sets. The classification approach depends on initializing the level sets in the 3D volume, and the level sets evolve with time to yield the blood vessels. This work introduces a high-quality initialization for the level set functions, allowing extraction o...
متن کامل